Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Partially coherent digital in-line holographic microscopy in characterization of a microscopic target

Not Accessible

Your library or personal account may give you access

Abstract

Digital holographic microscopy enables the capture of large three-dimensional volumes. Instead of using a laser as an illumination source, partially coherent alternatives can be used, such as light-emitting diodes, which produce parasitic reflection and speckle-free holograms. Captured high-contrast holograms are suitable for the characterization of micrometer-sized particles. As the reconstructed phase is not usable in the case of multiple overlapping objects, depth extraction can be conducted on a reconstructed intensity. This work introduces a novel depth extraction algorithm that takes into consideration the possible locations of multiple objects at various depths in the imaged volume. The focus metric, the Tamura coefficient, is applied for each pixel in the reconstructed amplitude throughout the volume. This work also introduces an optimized version of the algorithm, which is run in two stages. During the first stage, coarse positions of the objects are extracted by applying the Tamura coefficient to nonoverlapping window blocks of intensity reconstructions. The second stage produces high-precision characterizations of the objects by calculating the Tamura coefficient with overlapping window blocks around axial positions extracted in the first stage. Experimental results with real-world microscopic objects show the effectiveness of the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital in-line holographic microscopy

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer
Appl. Opt. 45(5) 836-850 (2006)

Pattern recognition with a digital holographic microscope working in partially coherent illumination

F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, and P. Kischel
Appl. Opt. 41(20) 4108-4119 (2002)

Partial spatial coherence effects in digital holographic microscopy with a laser source

Frank Dubois, Maria-Luisa Novella Requena, Christophe Minetti, Olivier Monnom, and Eric Istasse
Appl. Opt. 43(5) 1131-1139 (2004)

Supplementary Material (1)

Media 1: MOV (3525 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved