Abstract
This paper presents a novel two-frame fringe projection technique for real-time, accurate, and unambiguous three-dimensional (3D) measurement. One of the frames is a digital speckle pattern, and the other one is a composite image which is generated by fusing that speckle image with sinusoidal fringes. The contained sinusoidal component is used to obtain a wrapped phase map by Fourier transform profilometry, and the speckle image helps determine the fringe order for phase unwrapping. Compared with traditional methods, the proposed pattern scheme enables measurements of discontinuous surfaces with only two frames, greatly reducing the number of required patterns and thus reducing the sensitivity to movements. This merit makes the method very suitable for inspecting dynamic scenes. Moreover, it shows close performance in measurement accuracy compared with the phase-shifting method from our experiments. To process data in real time, a Compute Unified Device Architecture–enabled graphics processing unit is adopted to accelerate some time-consuming computations. With our system, measurements can be performed at 21 frames per second with a resolution of 307,000 points per frame.
© 2015 Optical Society of America
Full Article | PDF ArticleMore Like This
Tianyang Tao, Qian Chen, Shijie Feng, Yan Hu, Jian Da, and Chao Zuo
Appl. Opt. 56(13) 3646-3653 (2017)
Wei Yin, Shijie Feng, Tianyang Tao, Lei Huang, Maciej Trusiak, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2411-2431 (2019)
Yan Hu, Qian Chen, Yuzhen Zhang, Shijie Feng, Tianyang Tao, Hui Li, Wei Yin, and Chao Zuo
Appl. Opt. 57(4) 772-780 (2018)