Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High temperature strain sensor based on a fiber Bragg grating and rhombus metal structure

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a novel high temperature strain sensor based on a polyimide-coated fiber Bragg grating (FBG) and a rhombus metal structure is presented and experimentally demonstrated. By heating low softening point glass via a micro torch, the polyimide-coated FBG could be fixed into the rhombus metal structure. Consequently, when the rhombus structure is stretched and compressed, respectively, then the FBG will be subjected to a reverse state. Moreover, the strain sensitivity is controllable and enhanced by adjusting the dimension of the rhombus metal structure appropriately. The experiment was then carried out by using an equi-intensity cantilever beam and high temperature chamber, and the result showed that the proposed high temperature strain sensor could be used at the high temperature of 300°C. A resolution of 10με has been experimentally achieved. The average wavelength strain sensitivity at 300°C is 1.821 and 1.814 pm/με, for the compressed and stretched states, respectively.

Full Article  |  PDF Article
More Like This
Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating

Lingya Lv, Sumei Wang, Lan Jiang, Fei Zhang, Zhitao Cao, Peng Wang, Yi Jiang, and Yongfeng Lu
Appl. Opt. 54(36) 10678-10683 (2015)

Metal-coated high-temperature strain optical fiber sensor based on cascaded air-bubble FPI-FBG structure

Jianqiao Liang, Yang Yu, Qiang Bian, Wenjie Xu, Zhencheng Wang, Shumao Zhang, Junjie Weng, Jiajian Zhu, Yong Chen, Xiaoyang Hu, Junbo Yang, and Zhenrong Zhang
Opt. Express 31(10) 16795-16811 (2023)

Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer

Yajun Jiang, Dexing Yang, Yuan Yuan, Jian Xu, Dong Li, and Jianlin Zhao
Appl. Opt. 55(23) 6341-6345 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.