Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier

Not Accessible

Your library or personal account may give you access

Abstract

We have investigated an amplifier which operates on surface plasmon polaritons (SPPs). A semiconductor is considered instead of dielectric since its interface with metal can support transverse-magnetic-polarized SPP propagation. A T-shaped cross section for the analyzed waveguide is considered. Metal–semiconductor interface conditions in particular can be regarded as a Schottky junction that has the capability of being pumped electrically. So compensation of propagation loss imposed by metal is possible and beyond that, amplification occurs. This configuration has advantages such as a simple fabrication process and compact size. This scheme has been implemented previously in 3.16, 1.7, and 0.8 μm for increasing the propagation length of the SPP but here, the free-space wavelength of 1.55 μm is considered for designing a plasmonic amplifier. This wavelength is selected because this is the most used wavelength in fiber-optic telecommunications due to its ultralow attenuation in silica. However, designing such an amplifier with too many effects that arise in a Schottky junction may be an extremely difficult process. So simplification, which regards essential effects and ignores nonimportant ones, is included. In this work, gold is considered as the metal and n+-doped In0.53Ga0.47As as the semiconductor to form a Schottky junction. The semiconductor has a doping concentration of 1×1018cm3. In forward bias of 1.25 V, the gain coefficient of the SPP mode is estimated up to 337cm1 which corresponds to 14.62 dB power gain for a 100 μm long amplifier.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Full loss compensation in hybrid plasmonic waveguides under electrical pumping

Dmitry A. Svintsov, Aleksey V. Arsenin, and Dmitry Yu. Fedyanin
Opt. Express 23(15) 19358-19375 (2015)

Dispersion relation for surface plasmon polaritons on a Schottky junction

Thamani Wijesinghe and Malin Premaratne
Opt. Express 20(7) 7151-7164 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved