Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ray tracing method in phase space for two-dimensional optical systems

Not Accessible

Your library or personal account may give you access

Abstract

Ray tracing is a forward method to calculate the photometric variables at the target of a non-imaging optical system. In this paper, a new ray tracing technique is presented to improve the accuracy and to reduce the computational time of the classical ray tracing approach. The method is based on the phase space representation of the source and the target of the optical system, and it is applied to a two-dimensional TIR-collimator. The strength of the method lies in tracing fewer rays through the system. Only rays that lie in the meridional plane are considered. A procedure that disregards rays in smooth regions in phase space, where the luminance is continuous, is implemented and only the rays close to discontinuities are traced. The efficiency of the method is demonstrated by numerical simulations that compare the new method with Monte Carlo ray tracing. The results show that the phase space approach is faster and more accurate than the already existing ray tracing method; moreover the phase space method converges as one over the number of rays traced unlike Monte Carlo ray tracing in which the speed of convergence is proportional to one over the square root of the number of rays.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Ray-tracing simulation method using piecewise quadratic interpolant for aspheric optical systems

Shin-ya Morita, Yohei Nishidate, Takashi Nagata, Yutaka Yamagata, and Cristian Teodosiu
Appl. Opt. 49(18) 3442-3451 (2010)

CFSpro: ray tracing for design and optimization of complex fenestration systems using mixed dimensionality approach

André Kostro, Mario Geiger, Jean-Louis Scartezzini, and Andreas Schüler
Appl. Opt. 55(19) 5127-5134 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.