Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids

Not Accessible

Your library or personal account may give you access

Abstract

We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible–mid-IR range of 0.4–5 μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene

Van Thuy Hoang, Rafal Kasztelanic, Alicja Anuszkiewicz, Grzegorz Stepniewski, Adam Filipkowski, Slawomir Ertman, Dariusz Pysz, Tomasz Wolinski, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczynski
Opt. Mater. Express 8(11) 3568-3582 (2018)

Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide

Mohammad Pourmand, Arash Karimkhani, and Fakhroddin Nazari
Appl. Opt. 55(35) 10060-10066 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.