Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In-plane displacement measurement using optical vortex phase shifting

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose a new method for in-plane displacement measurement by application of phase shifting based on an optical vortex. The phase shifts are obtained by displaying computer-generated fork holograms on the screen of a liquid-crystal spatial light modulator (LC-SLM). Furthermore, the vortex beam that is generated by the LC-SLM can be used as a reference light in the experiment. Eight speckle patterns with phase-shift increments of 0, π/2, π, and 3π/2 were captured by a CCD camera before and after the deformation. The displacement of the deformed object was obtained by unwrapping. Experimental results demonstrated the efficacy of the proposed method for in-plane displacement measurement.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical vortex phase-shifting digital holography

Cheng-Shan Guo, Xin Cheng, Xiu-Yun Ren, Jian-Ping Ding, and Hui-Tian Wang
Opt. Express 12(21) 5166-5171 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.