Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distributed dynamic strain measurement using optical frequency-domain reflectometry

Not Accessible

Your library or personal account may give you access

Abstract

Distributed dynamic strain measurement based on optical frequency-domain reflectometry is proposed. The technique makes use of the wide scanning range of a tunable laser source in a short sweeping time, and subdivides the overall spectrum into narrower frequency windows. The advantage of subdividing the laser spectral range is to improve the measurement uncertainty induced by the laser wavelength difference between repeated scans. The noise-limited dynamic strain resolution is investigated experimentally, indicating that a minimum detectable strain is less than 200 nε for a spatial resolution of 20 cm. By measuring the subdivided spectral shifts in the time sequence along the sensing fiber, the dynamic strain can be properly quantified over a 30 m measurement range for a highest sampling rate of up to 50 Hz.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Distributed vibration sensing with time-resolved optical frequency-domain reflectometry

Da-Peng Zhou, Zengguang Qin, Wenhai Li, Liang Chen, and Xiaoyi Bao
Opt. Express 20(12) 13138-13145 (2012)

Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique

Daichi Wada, Hirotaka Igawa, and Tokio Kasai
Appl. Opt. 55(25) 6953-6959 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.