Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a novel photonic-assisted microwave frequency measurement scheme based on an integrated dual-polarization Mach–Zehnder modulator (DPol-MZM). The DPol-MZM is used to obtain a polarization multiplexing signal modulated by the microwave signal with the frequency to be identified. The obtained signal is split into two channels after propagating along a single mode fiber. The two divided parts are used to establish an amplitude comparison function (ACF) which provides frequency-power mapping. The proposed scheme is experimentally verified. The frequency responses of the two branches are nearly complementary; thus, a relatively steep ACF is obtained. A frequency measurement range from 2 to 28 GHz with an error of ±0.2GHz is achieved. Moreover, the measurement range can be tuned by simply adjusting the polarization state of one channel. The proposed system is simple, and the measurement range can be easily adjusted.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Microwave photonics broadband unambiguous frequency measurement based on a Sagnac loop and a linear optical filter

Yinling Zhang, Tao Shang, Gufeng Li, Xiongchao Liu, Dan Chen, and Zhaokun Li
Appl. Opt. 61(17) 5090-5097 (2022)

Photonic Doppler frequency shift measurement based on a dual-polarization modulator

Xiaoyan Li, Aijun Wen, Wei Chen, Yongsheng Gao, Shuiying Xiang, Huixing Zhang, and Xiaoming Ma
Appl. Opt. 56(8) 2084-2089 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.