Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lidar reflectance from snow at 2.05 μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer

Not Accessible

Your library or personal account may give you access

Abstract

We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO2 absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO2 measurements from low Earth orbit pertinent to the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO2 measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO2 band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection

Gary D. Spiers, Robert T. Menzies, Joseph Jacob, Lance E. Christensen, Mark W. Phillips, Yonghoon Choi, and Edward V. Browell
Appl. Opt. 50(14) 2098-2111 (2011)

Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement

Tamer F. Refaat, Upendra N. Singh, Jirong Yu, Mulugeta Petros, Ruben Remus, and Syed Ismail
Appl. Opt. 55(15) 4232-4246 (2016)

Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar

Jeremy T. Dobler, F. Wallace Harrison, Edward V. Browell, Bing Lin, Doug McGregor, Susan Kooi, Yonghoon Choi, and Syed Ismail
Appl. Opt. 52(12) 2874-2892 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.