Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of methods for the reduction of reconstructed layers in atmospheric tomography

Not Accessible

Your library or personal account may give you access

Abstract

For the new generation of extremely large telescopes (ELTs), the computational effort for adaptive optics (AO) systems is demanding even for fast reconstruction algorithms. In wide-field AO, atmospheric tomography, i.e., the reconstruction of turbulent atmospheric layers from wavefront sensor data in several directions of view, is the crucial step for an overall reconstruction. Along with the number of deformable mirrors, wavefront sensors and their resolution, as well as the guide star separation, the number of reconstruction layers contributes significantly to the numerical effort. To reduce the computational cost, a sparse reconstruction profile which still yields good reconstruction quality is needed. In this paper, we analyze existing methods and present new approaches to determine optimal layer heights and turbulence weights for the tomographic reconstruction. Two classes of methods are discussed. On the one hand, we have compression methods that downsample a given input profile to fewer layers. Among other methods, a new compression method based on discrete optimization of collecting atmospheric layers to subgroups and the compression by means of conserving turbulence moments is presented. On the other hand, we take a look at a joint optimization of tomographic reconstruction and reconstruction profile during atmospheric tomography, which is independent of any a priori information on the underlying input profile. We analyze and study the qualitative performance of these methods for different input profiles and varying fields of view in an ELT-sized multi-object AO setting on the European Southern Observatory end-to-end simulation tool OCTOPUS.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars

Roland Wagner, Tapio Helin, Andreas Obereder, and Ronny Ramlau
Appl. Opt. 55(6) 1421-1429 (2016)

Finite element-wavelet hybrid algorithm for atmospheric tomography

Mykhaylo Yudytskiy, Tapio Helin, and Ronny Ramlau
J. Opt. Soc. Am. A 31(3) 550-560 (2014)

Multi time-step wavefront reconstruction for tomographic adaptive-optics systems

Yoshito H. Ono, Masayuki Akiyama, Shin Oya, Olivier Lardiére, David R. Andersen, Carlos Correia, Kate Jackson, and Colin Bradley
J. Opt. Soc. Am. A 33(4) 726-740 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.