Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reflectance bandwidth and efficiency improvement of light-emitting diodes with double-distributed Bragg reflector

Not Accessible

Your library or personal account may give you access

Abstract

Distributed Bragg reflectors (DBR) with metal film on the bottom have been demonstrated to further improve the light output power of GaN-based light-emitting diodes (LEDs). Periods of TiO2/SiO2 stacks, thickness of metal film, and material of metallic reflector were designed and optimized in simulation software. The maximal bandwidth of double-DBR stacks have reached up to 272 nm, which was 102 nm higher than a single-DBR stack. The average reflectance of LEDs with wavelength from 380 nm to 780 nm in double-DBR stacks is 95.09% at normal incident, which was much higher than that of a single-DBR stack whose average reflectance was 91.38%. Meanwhile, maximal average reflectance of LEDs for double-DBR stacks with an incident angle from 0 to 90° was 97.41%, which was 3.2% higher than that of a single-DBR stack with maximal average reflectance of 94.21%. The light output power of an LED with double-DBR stacks is 3% higher than that of an LED with a single-DBR stack, which was attributed to high reflectance of double-DBR stacks.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced luminous efficiency of phosphor-converted LEDs by using back reflector to increase reflectivity for yellow light

Shengjun Zhou, Bin Cao, Shu Yuan, and Sheng Liu
Appl. Opt. 53(34) 8104-8110 (2014)

Numerical simulation and experimental investigation of GaN-based flip-chip LEDs and top-emitting LEDs

Xingtong Liu, Shengjun Zhou, Yilin Gao, Hongpo Hu, Yingce Liu, Chengqun Gui, and Sheng Liu
Appl. Opt. 56(34) 9502-9509 (2017)

Enhanced performance of GaN-based visible flip-chip mini-LEDs with highly reflective full-angle distributed Bragg reflectors

Lang Shi, Xiaoyu Zhao, Peng Du, Yingce Liu, Qimeng Lv, and Shengjun Zhou
Opt. Express 29(25) 42276-42286 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved