Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis

Not Accessible

Your library or personal account may give you access

Abstract

A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098μg·mL1, 0.18μg·mL1, 0.83μg·mL1, and 0.046μg·mL1, respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate

Xu Wen, Qingyu Lin, Guanghui Niu, Qi Shi, and Yixiang Duan
Appl. Opt. 55(24) 6706-6712 (2016)

Determination of Ca and Mg in aqueous solution by laser-induced breakdown spectroscopy using absorbent paper substrates

Dehua Zhu, Lizhi Wu, Bin Wang, Jianping Chen, Jian Lu, and Xiaowu Ni
Appl. Opt. 50(29) 5695-5699 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.