Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental and numerical study of underwater beam propagation in a Rayleigh–Bénard turbulence tank

Abstract

The propagation of a laser beam through Rayleigh–Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5m×0.5m×0.5m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Synchronous optical intensity and phase measurements to characterize Rayleigh–Bénard convection

Nathaniel A. Ferlic, Svetlana Avramov-Zamurovic, Owen O’Malley, K. Peter Judd, and Linda J. Mullen
J. Opt. Soc. Am. A 40(9) 1662-1672 (2023)

Neural network classification of beams carrying orbital angular momentum after propagating through controlled experimentally generated optical turbulence

William A. Jarrett, Svetlana Avramov-Zamurovic, Joel M. Esposito, K. Peter Judd, and Charles Nelson
J. Opt. Soc. Am. A 41(6) B1-B13 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved