Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of self-absorption correction on surface hardness estimation of Fe–Cr–Ni alloys via LIBS

Not Accessible

Your library or personal account may give you access

Abstract

The effect of self-absorption was investigated on the estimation of surface hardness of Fe–Cr–Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface hardness determination of 3D printed parts using laser-induced breakdown spectroscopy

Jinwei Yang, Linghua Kong, Guofu Lian, and Tongfei You
Appl. Opt. 60(3) 499-504 (2021)

Electron number density conservation model combined with a self-absorption correction methodology for analysis of nanostructure plasma using laser-induced breakdown spectroscopy

Zahid Farooq, Raheel Ali, Aqrab ul Ahmad, M. Yaseen, Mian H. R. Mahmood, M. Fahad, M. Nasir Hussain, I. Rehan, M. Zubair Khan, Ramiza, M. Umer Farooq, M. Abdul Qayyum, and M. Shafique
Appl. Opt. 59(8) 2559-2568 (2020)

Accuracy improvement of single-sample calibration laser-induced breakdown spectroscopy with self-absorption correction

Fan Deng, Zhenlin Hu, Deng Zhang, Feng Chen, Xuechen Niu, Junfei Nie, Qingdong Zeng, and Lianbo Guo
Opt. Express 30(6) 9256-9268 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved