Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image decomposition fusion method based on sparse representation and neural network

Not Accessible

Your library or personal account may give you access

Abstract

For noisy images, in most existing sparse representation-based models, fusion and denoising proceed simultaneously using the coefficients of a universal dictionary. This paper proposes an image fusion method based on a cartoon + texture dictionary pair combined with a deep neural network combination (DNNC). In our model, denoising and fusion are carried out alternately. The proposed method is divided into three main steps: denoising + fusion + network denoising. More specifically, (1) denoise the source images using external/internal methods separately; (2) fuse these preliminary denoised results with external/internal cartoon and texture dictionary pair to obtain the external cartoon + texture sparse representation result (E-CTSR) and internal cartoon + texture sparse representation result (I-CTSR); and (3) combine E-CTSR and I-CTSR using DNNC (EI-CTSR) to obtain the final result. Experimental results demonstrate that EI-CTSR outperforms not only the stand-alone E-CTSR and I-CTSR methods but also state-of-the-art methods such as sparse representation (SR) and adaptive sparse representation (ASR) for isomorphic images, and E-CTSR outperforms SR and ASR for heterogeneous multi-mode images.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Image fusion via nonlocal sparse K-SVD dictionary learning

Ying Li, Fangyi Li, Bendu Bai, and Qiang Shen
Appl. Opt. 55(7) 1814-1823 (2016)

Image fusion using a multi-level image decomposition and fusion method

Yu Tian, Wenjing Yang, and Ji Wang
Appl. Opt. 60(24) 7466-7479 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.