Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance

Not Accessible

Your library or personal account may give you access

Abstract

A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active—and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

Full Article  |  PDF Article
More Like This
Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy

Amir Hossein Rezaei, Mohammad Hossein Keshavarz, Masoud Kavosh Tehrani, Seyyed Mohammad Reza Darbani, Amir Hossein Farhadian, Seyyed Jabbar Mousavi, and Ali Mousaviazar
Appl. Opt. 55(12) 3233-3240 (2016)

Determination of detonation characteristics by laser-induced plasma spectra and micro-explosion dynamics

Xianshuang Wang, Ruibin Liu, Yage He, Ying Fu, Junfeng Wang, An Li, Xueyong Guo, Manman Wang, Wei Guo, Tonglai Zhang, Qinghai Shu, and Yugui Yao
Opt. Express 30(4) 4718-4736 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved