Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process

Not Accessible

Your library or personal account may give you access

Abstract

Chalcogenide glass (ChG) is increasingly used in infrared optical systems owing to its excellent infrared optical properties and scalable production using precision glass molding (PGM). However, surface scratches affected by the molding temperature and microdimples on the lens surface caused by gas release seriously impair the quality of the formed lens. To reduce these surface defects when molding Ge22Se58As20 ChG, the temperature effect must be studied, and the gas generation must be minimized, while the gas escape must be maximized. In this work, we studied the effect of temperature on the surface defects. Additionally, we studied the influences of the roughness and curvature of the contact surfaces, as well as the pressing force on the formation of the microdimples. It was found that the molding temperature should be approximately 30°C higher than the softening temperature (Ts) to avoid surface scratches. The gas generation could be inhibited by increasing the pressing force and decreasing the roughness of the mold surface, and finally, increasing the curvature difference between the mold and glass preform surfaces improved the gas escape.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis on the instability of the surface profiles of precision molding chalcogenide glass aspherical lenses in mass production

Yue Liu, Changxi Xue, Gaofei Sun, and Guoyv Zhang
Opt. Express 31(19) 31158-31176 (2023)

Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array

Jiaqing Xie, Tianfeng Zhou, Benshuai Ruan, Yifei Du, and Xibin Wang
Appl. Opt. 56(23) 6622-6630 (2017)

Analysis of lens fracture in precision glass molding with the finite element method

Yue Liu, Yintian Xing, Chuang Li, Chao Yang, and Changxi Xue
Appl. Opt. 60(26) 8022-8030 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.