Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient signal design and optimal power allocation for visible light communication attocell systems

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we investigate visible light communication (VLC) attocell systems in which any two neighboring attocells overlap. An efficient signal design for VLC called time superposition reuse (TSR) is proposed to mitigate interference and improve spectral efficiency. In the scheme, two neighboring cells are allocated with two time slots that have superposition in the time domain. By adjusting superposition between time slots, the system can achieve a flexible spectral efficiency and system performance. Further, we develop an optimal power allocation strategy for TSR in the system. The strategy is given according to the position of the user and the level of superposition, and then the corresponding optimal Euclidean distance is derived. In addition, we analyze the system performance and prove that the optimal Euclidean distance is an increasing function of the delay between signals and a decreasing function of the sampling period. Simulation results demonstrate that the optimal power allocation has a better performance than uniform power allocation and TSR outperforms time division multiple access significantly for the user in VLC attocell systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Hybrid Visible Light and Power Line Communication for Indoor Multiuser Downlink

Hao Ma, Lutz Lampe, and Steve Hranilovic
J. Opt. Commun. Netw. 9(8) 635-647 (2017)

Two-dimensional power allocation scheme for NOMA-based underwater visible light communication systems

Danyang Chen, Kai Fan, Jianping Wang, Huimin Lu, Jianli Jin, and Changling Liu
Appl. Opt. 62(1) 211-216 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.