Abstract
A novel, near-ultraviolet-excited white-light-emitting phosphor , was synthesized by the solid-state method. Luminescence properties and the energy transfer mechanism were investigated in detail by photoluminescence spectra and decay curves. With the energy transfer between and , a cold white light with chromaticity coordinates of (0.2790, 0.2273), correlated color temperature of 6501 K, Ra of 70, and external quantum efficiency of 35.5% was realized by changing the ratios of and in the , phosphors. Resonant energy transfer from to has been demonstrated to be a dipole–dipole mechanism in . The energy transfer efficiency increases with concentration increasing, and reaches a maximum of 55.6%.
© 2017 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (8)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (5)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription