Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-plane slightly off-axis digital holography based on a single cube beam splitter

Not Accessible

Your library or personal account may give you access

Abstract

In order to recover the holographic object information, a method based on the recording of two digital holograms, not only at different planes but also in a slightly off-axis scheme, is presented. By introducing a π-phase shift in the reference wave, the zero-order diffracted term and the twin image are removed in the frequency domain during the processing of the recorded holograms. We show that the zero-order elimination by the phase-shifted holograms is better than working with weak-order beam and average intensity removal methods. For recording experimentally two π-shifted holograms at different planes slightly off-axis, a single cube beam splitter is used. Computer simulations and experimental results, carried out to validate our proposal, show a high accuracy of π/14 that can be comparable with phase-shifting digital holography. For high fringe spacing, our proposal could be applied in electron holography, avoiding high voltage in a biprism.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Off-axis common-path digital holography using a cube beam splitter

Yunhao Li, Lei Liu, Yizhe Liu, Mengyao Wang, Zhi Zhong, and Mingguang Shan
Appl. Opt. 61(17) 5062-5066 (2022)

Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube

J. A. Picazo-Bueno, M. Trusiak, and V. Micó
Opt. Express 27(4) 5655-5669 (2019)

Dual-plane in-line digital holography based on liquid crystal on silicon spatial light modulator

Spozmai Panezai, Dayong Wang, Jie Zhao, Yunxin Wang, and Lu Rong
Appl. Opt. 53(27) G105-G110 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved