Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Life cycle analysis of electrically actuated SMA spring using Talbot interferometry

Not Accessible

Your library or personal account may give you access

Abstract

Electrically actuated shape memory alloys (SMAs) find widespread applications in engineering and science. Such materials are known to retain/remember their state. In the stressed/deformed state, when activated by the application of a suitable excitation mechanism, such as the use of heat or potential, they return to their original unstressed state. To test their reliability, it is a standard procedure to undertake a life cycle analysis. In this paper, the life cycle analysis of a SMA spring using the Talbot interferometric technique is reported. The life cycle of the SMA spring is analyzed in terms of the displacement drift, which sets in because of the functional fatigue generated due to its repeated use. Collimated light from a He–Ne laser transmitted through a beam splitter is converged through a focusing lens onto a plane mirror attached to the spring. Backreflected light from the mirror is incident on a set of two Ronchi gratings separated by the Talbot distance, forming a moiré pattern. The resulting interferograms are analyzed using a fringe rotation mechanism. The angle of orientation is a function of displacement drift. There is deterioration in the SMA property because of repeated cycles, and the spring loses its ability to return to its original unstretched position. The values of the displacement drift generated after 1, 1000, 2000, 3000, 4000, and 5000 such cycles as measured using a Talbot interferometer are 0, 0.875, 1.275, 1.459, 1.720, and 1.859 mm, respectively. It is observed that the SMA effect deteriorates as the number of stretching/contraction cycles increases. The uncertainty analysis is also reported. The expanded uncertainty was determined to be 201.61 μm.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface profiling of a transparent object by use of phase-shifting Talbot interferometry

Madhuri Thakur, Cho Jui Tay, and Chenggen Quan
Appl. Opt. 44(13) 2541-2545 (2005)

Solar energy-actuated back and forth optical mechanism

Lihui Wang, Hongjin Xu, and Masatoshi Ishikawa
Appl. Opt. 58(15) E7-E11 (2019)

Talbot interferometry with increased shear

Krzysztof Patorski
Appl. Opt. 24(24) 4448-4453 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.