Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous determination of aerosol optical depth and exponent of the Junge power law from MODIS shortwave infrared bands over Qinghai Lake

Not Accessible

Your library or personal account may give you access

Abstract

The water-leaving radiances for shortwave infrared (SWIR) channels can be negligible, and these channels also contain information on aerosol particle size. Therefore, the satellite-based data of SWIR channels can be used to estimate aerosol particle size over inland waters [Appl. Opt. 39, 887 (2000) [CrossRef]  ]. Supposing the actual atmospheric aerosol size distribution is based on the Junge power law, in this paper an iterative algorithm is used to simultaneously determine the aerosol optical depth (AOD) and the exponent of the Junge power law from Aqua MODIS L1B reflectance data of channels 1.64 μm and 2.13 μm over Qinghai Lake. Whether using the constant or variable aerosol complex refractive index (ACRI), the retrieved exponent of the Junge power law is always larger than the product value. Supposing the product values are accurate, for the constant ACRI, there are 68.91% and 25.48% pixels of acceptable retrieval AOD and the exponent of the Junge power-law value, respectively. Likewise, there are 71.63% and 43.75% pixels for variable ACRI. Compared with the retrieval error under constant ACRI, there are 58.65% and 98.72% pixels, with a smaller AOD and Junge power-law index retrieval error under variable ACRIs, respectively. In addition, the precision of the AOD retrieved with variable ACRI is improved when the AOD product is less than 0.17. However, under the current environment with frequent aerosol particle pollution, the same ACRI for the ten wavelengths can achieve results with equivalent accuracy compared with variable ACRI.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm

Min Oo, Marco Vargas, Alex Gilerson, Barry Gross, Fred Moshary, and Sam Ahmed
Appl. Opt. 47(21) 3846-3859 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved