Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization-induced distortion effects on the information rate in single-mode fibers

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we examine information theoretical properties of single-mode fibers in the presence of polarization-induced distortion effects. We derive some capacity results and further obtain several nonergodic achievable rates. In this work, however, mostly linear distortions are considered. Since polarization-dependent loss (PDL) is a nonunitary phenomenon, information rate loss caused by PDL is fundamentally inevitable. Interestingly, it is shown that in the presence of channel state information at the transmitter, PDL can increase the capacity in some scenarios. We analytically found also that the highest average capacity improvement from the knowledge of PDL at the transmitter is equal to the mean PDL of the link, and this benefit vanishes at high signal-to-noise ratio. In order to achieve the ergodic capacity, it is established that sending uncorrelated Gaussian signals with equal power via both polarizations is the optimum transmit strategy. As it turns out from the results, perhaps counterintuitively, in the presence of PDL, polarization mode dispersion (PMD) always improves the maximum outage rate; however, the PMD impact on the maximum throughput and the maximum two-layer expected rate is trivial. Finally, an extension to the simple Gaussian noise model of fiber nonlinearity is explored. All theoretical results are illustrated by numerical simulations.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Impact of nonlinear and polarization effects in coherent systems

Chongjin Xie
Opt. Express 19(26) B915-B930 (2011)

Polarization-time coding for PDL mitigation in long-haul PolMux OFDM systems

Elie Awwad, Yves Jaouën, and Ghaya Rekaya-Ben Othman
Opt. Express 21(19) 22773-22790 (2013)

Combined PMD-PDL effects on BERs in simplified optical systems: an analytical approach

Liang Chen, Zhongxi Zhang, and Xiaoyi Bao
Opt. Express 15(5) 2106-2119 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.