Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Research on tunable distributed SPR sensor based on bimetal film

Not Accessible

Your library or personal account may give you access

Abstract

In order to overcome the limitations in range of traditional prism structure surface plasmon resonance (SPR) single-point sensor measurement, a symmetric bimetallic film SPR multi-sensor structure is proposed. Based on this, the dual-channel sensing attenuation mechanism of SPR in gold and silver composite film and the improvement of sensing characteristics were studied. By optimizing the characteristics such as material and thickness, a wider range of dual-channel distributed sensing is realized. Using a He–Ne laser (632.8 nm) as the reference light source, prism-excited symmetric SPR sensing was studied theoretically for a symmetrical metal-clad dielectric waveguide using thin-film optics theory. The influence of the angle of incidence of the light source and the thickness of the dielectric layer on the performance of SPR dual formant sensing is explained. The finite-difference time-domain method was used for the simulation calculation for various thicknesses and compositions of the symmetric combined layer, resulting in the choice of silver (30 nm) and gold (10 nm). When the incident angle was 78 deg, the quality factor reached 5960, showing an excellent resonance sensing effect. The sensitivity reached a maximum of 5.25×105 RIU when testing the water content of an aqueous solution of honey, which proves the feasibility and practicality of the structure design. The structure improves the theoretical basis for designing an SPR multi-channel distributed sensing system, which can greatly reduce the cost of biochemical detection and significantly increase the detection efficiency.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Cascaded dual-channel broadband SPR fiber optic sensor based on Ag and Ag/ZnO/PDMS film structure

Zhiyong Yin, Xili Jing, Kaifeng Li, Zhibing Zhang, and Linchuan Hu
Opt. Express 32(4) 6190-6203 (2024)

Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure

Chong Yue, Yaopu Lang, Xinglin Zhou, and Qinggang Liu
Appl. Opt. 58(34) 9411-9420 (2019)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved