Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of vibration amplitudes from binary phase patterns obtained by phase-shifting time-averaged speckle shearing interferometry

Not Accessible

Your library or personal account may give you access

Abstract

Speckle shearing interferometry (shearography) is a full-field strain measurement technique that can be used in vibration analysis. In our case, we apply a method that combines the time-averaging and phase-shifting techniques. It produces binary phase patterns, where the phase changes are related to the zeroes of a Bessel J0 function, typical of time-averaging. However, the contrast and resolution are better compared to traditional time-averaging. In a previous paper, we have shown that this is particularly useful in vibration testing performed under industrial conditions, because fringe patterns are noisier than in quiet laboratory environments. This paper goes a step further in proposing a processing method for estimating the vibration amplitude, for helping non-experts to identify vibration modes. Since shearography measures the spatial derivative of displacement, spatial integration is required. Prior to that, different processes like denoising, binarization, automated nodal line detection, and amplitude assignment are applied. We analyze the performance of the method on synthetic and experimental data, in the function of noise level and fringes density. Results on data acquired in an industrial environment illustrate the good performances of the proposed method.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative vibration analysis using a single fringe pattern in time-average speckle interferometry

B. Deepan, C. Quan, and C. J. Tay
Appl. Opt. 55(22) 5876-5883 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.