Abstract
We report on the performance of an enhanced-cavity (EC) designed for obtaining high-power and efficiency second-harmonic generation (SHG). This is performed by numerical simulation of SHG coupled equations in the presence of a thermal dephasing effect that is effectively intensified through embedding the periodically poled crystal by an oven-surrounded scheme. It is found that by setting the PPLN temperature at an optimum value, adjusting the mirror reflectively, and pumping power at certain values, gaining SHG efficiency of more than 90% is possible. We further realized that by an ECSHG device SHG efficiency can be improved by about 15%–50%. Moreover, compared to a single-pass SHG scheme, the EC-based SHG device is shown to be a very promising candidate to reduce and suppress the effect of thermal dephasing on the stability and efficiency of SHG radiation.
© 2018 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (7)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (8)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription