Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Research of the three-dimensional tracking and registration method based on multiobjective constraints in an AR system

Not Accessible

Your library or personal account may give you access

Abstract

To match the virtual image and actual environment in an augmented reality (AR) system, it is necessary to complete the task of three-dimensional (3D) tracking registration. This paper proposes a new method for 3D tracking registration. Previous methods extract feature points in images to realize tracking registration. In this paper, the objects are extracted from the deep convolution neural network in the scene, and the camera pose is estimated by establishing the constraint relation of the objects. Then, 3D tracking and registration of the virtual object are realized. We design an improved single-shot multibox detector semantic segmentation network to identify and segment the scene and extract the pixel classification results of the objects in the scene. The effect of classification with this method is better. The depth of the extracted object is estimated based on the data from the left and right cameras, and the 2D image is converted into a 3D point cloud. A camera pose estimation method, combined with multiobjective information, is proposed. The camera transformation matrix is directly estimated by establishing a mathematical model. This method avoids the effect on the accuracy of the camera pose estimation when the feature points are not sufficient. Moreover, by assigning different weights to the point clouds of different objects, errors caused by the model can be reduced. The experimental results showed that the 3D registration method proposed in this paper is less than 2.5 pixels in the application scene of an augmented reality head-up display. This method had a better effect compared with that of existing methods and also improved driving safety.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Augmented reality registration algorithm based on T-AKAZE features

Xiu Ji, Huamin Yang, Cheng Han, Jiayu Xu, and Yan Wang
Appl. Opt. 60(35) 10901-10913 (2021)

Reconstruction-based 6D pose estimation for robotic assembly

Zhongchen Shi, Kai Xu, Zhang Li, Banglei Guan, Gang Wang, and Yang Shang
Appl. Opt. 59(31) 9824-9835 (2020)

Accurate three dimensional body scanning system based on structured light

Haosong Yue, Yue Yu, Weihai Chen, and Xingming Wu
Opt. Express 26(22) 28544-28559 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved