Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fiber optic surface-plasmon-resonance-based highly sensitive arsenic sensor prepared using α-Fe2O3/SnO2 core-shell nanostructure with optimized probe parameters

Not Accessible

Your library or personal account may give you access

Abstract

A novel surface plasmon resonance (SPR)-based fiber optic arsenic [As (III)] sensor is presented using α-Fe2O3/SnO2 core-shell nanostructure [abbreviated as (α-Fe/Sn) CS] synthesized using hydrolysis. Due to its extraordinary properties, such as very large surface area, great adsorption capabilities, and chemical reactivity, α-Fe2O3 nanoparticles offer excellent sensitivity and selectivity for As (III), while SnO2 shows great catalytic properties. To achieve the best sensing performance, the (α-Fe/Sn) CS is synthesized at different temperatures, and its morphological study is carried out using transmission electron microscopy. The performance of the probe fabricated over the silver-coated unclad core of the fiber with optimized fabrication temperature and attachment time of (α-Fe/Sn) CS is investigated for 0–100 μg/L concentration of As (III). The sensor possesses the limit of detection of 0.47 μg/L. Further, the roles of common interferands in sensor performance are investigated. The sensor possesses the advantages of real-time detection, capability of remote sensing, and online monitoring, which uphold its industrial application.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors

Yi Zhu, Haiwei Fu, Jijun Ding, Huidong Li, Min Zhang, Jingle Zhang, and Yinggang Liu
Appl. Opt. 57(27) 7924-7930 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.