Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multimode waveguide crossing based on a square Maxwell’s fisheye lens

Not Accessible

Your library or personal account may give you access

Abstract

Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell’s fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77μm2. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than 72, 61, and 27dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Rectangular Maxwell’s fisheye lens via transformation optics as a crossing medium for dissimilar waveguides

S. Hadi Badri, M. M. Gilarlue, and H. Taghipour-Farshi
J. Opt. Soc. Am. B 37(8) 2437-2443 (2020)

Polymer multimode waveguide bend based on a multilayered Eaton lens

S. Hadi Badri, H. Rasooli Saghai, and Hadi Soofi
Appl. Opt. 58(19) 5219-5224 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.