Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared spectroscopy (NIRS) is an efficient method for detecting the content of carbon and nitrogen in many materials, which solves the problems of the time-consuming and high-cost traditional chemical analysis method. To quickly detect the carbon-nitrogen ratio (C/N) for the anaerobic fermentation (AF) feedstock using NIRS, a genetic simulated annealing algorithm (GSA) is presented based on a genetic algorithm combined with a simulated annealing algorithm. By combining GSA with backward interval partial least squares (BiPLS), we construct a BiPLS-GSA algorithm to optimize the characteristic wavelength variables of NIRS; this algorithm significantly reduced the number of wavelength variables involved in modeling and effectively improved the detection accuracy and efficiency of the model. The determination coefficients, root mean squared error, mean relative error (MRE) and residual predictive deviation for the validation set in the BiPLS-GSA regression model were 0.9067, 7.6676, 5.5274%, and 3.5626, respectively. Meanwhile, compared to the entire spectrum model, the MRE was decreased by 16.54% in the BiPLS-GSA-based model. The research in this paper improves the adaptability of the prediction model based on optimizing sensitive wavelength variables for C/N, which provides a new way for rapid and accurate measurement of the C/N of AF feedstock.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid detection of cellulose and hemicellulose contents of corn stover based on near-infrared spectroscopy combined with chemometrics

Na Wang, Longwei Li, Jinming Liu, Jianfei Shi, Yang Lu, Bo Zhang, Yong Sun, and Wenzhe Li
Appl. Opt. 60(15) 4282-4290 (2021)

Rapid detection of talc content in flour based on near-infrared spectroscopy combined with feature wavelength selection

Changhao Bao, Changhao Zeng, Jinming Liu, and Dongjie Zhang
Appl. Opt. 61(19) 5790-5798 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved