Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Super-resolution reconstruction for terahertz imaging based on sub-pixel gradient field transform

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents the gradient-guided image super-resolution reconstruction for terahertz imaging to improve the image quality, taking advantage of super-resolution reconstruction based on adaptive super-pixel gradient field transform. Moreover, spatial entropy-based enhancement and a bilateral filter are introduced to ensure better performance of the reconstruction. Furthermore, we compare the performance of reconstruction operated on terahertz images with frequencies of 0.1 THz, 0.3 THz, 0.5 THz, and 0.7 THz. Experimental results demonstrate that this method successfully improves the image quality and reconstruct high-resolution images from low-resolution images with the peak signal-to-noise ratio and structural similarity index improved. In addition, the signal frequency and intensity are demonstrated to affect the performance of reconstruction.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism

Xiuwei Yang, Dehai Zhang, Zhongmin Wang, Yanbo Zhang, Jun Wu, Biyuan Wu, and Xiaohu Wu
Appl. Opt. 61(12) 3363-3370 (2022)

High-resolution reconstruction for terahertz imaging

Li-Min Xu, Wen-Hui Fan, and Jia Liu
Appl. Opt. 53(33) 7891-7897 (2014)

Terahertz image super-resolution based on a deep convolutional neural network

Zhenyu Long, Tianyi Wang, ChengWu You, Zhengang Yang, Kejia Wang, and Jinsong Liu
Appl. Opt. 58(10) 2731-2735 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved