Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Metal-printing polymer waveguide thermo-optic switches compatible with 650 and 532 nm visible signal wavelengths for plastic optical fiber systems

Not Accessible

Your library or personal account may give you access

Abstract

In this work, thermo-optic (TO) waveguide switches for 650 and 532 nm visible wavelengths are designed and fabricated by the metal-printing technique based on poly (methyl methacrylate—glycidyl methacrylate) [P(MMA-GMA)] material. The optical characteristics and thermal stability of the P(MMA-GMA) material are analyzed. Optical transmission modes in the core waveguide for different visible wavelengths are simulated, and the thermal field distribution from the self-heating electrode structure is calculated, respectively. The structural parameters of the devices compatible with 650 and 532 nm visible wavelengths are designed optimally. For 650 and 532 nm signal wavelengths, the insertion loss of the actual TO switch fabricated is less than 3.2 dB, and the response time of the device is about 367.4 μs at 100 Hz square wave electrical signals. The driving electrical power of the device for the 650 nm signal wavelength is 15.2 mW and 14.0 mW for the 532 nm signal wavelength, respectively. The extinction ratio of the visible TO switch for 650 nm is 15.1 dB and 18.5 dB for 532 nm, respectively. The technique is suitable for realizing plastic optical fiber system applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
650-nm 1 × 2 polymeric thermo-optic switch with low power consumption

Xi-Bin Wang, Jian Sun, Yu-Fen Liu, Jing-Wen Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang
Opt. Express 22(9) 11119-11128 (2014)

Interlayer directional coupling thermo-optic waveguide switches based on functionalized epoxy-crosslinking polymers

Jian Yue, Chunxue Wang, Hang Lin, Shuxiang Ding, Zuosen Shi, Zhanchen Cui, Changming Chen, and Daming Zhang
Opt. Express 30(9) 13931-13941 (2022)

Bottom-metal-printed thermo-optic waveguide switches based on low-loss fluorinated polycarbonate materials

Chunxue Wang, Daming Zhang, Xucheng Zhang, Shuxiang Ding, Jihou Wang, Ru Cheng, Fei Wang, Zhanchen Cui, and Changming Chen
Opt. Express 28(14) 20773-20784 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved