Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improving the spectral qualities of major elements in soil by controlling the ambient pressure in time-resolved laser-induced breakdown spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a powerful tool in the soil monitoring field, but the poor spectral quality limits its application. To improve the spectral quality of major elements in soil samples, a method based on controlling the ambient pressure and time sequence was introduced. Spectral qualities that include signal-to-background ratio (SBR), spectral stability, and spectral profile were all studied in different ambient pressures and delay times. The results show that the SBRs of Na and K elements increased from 20 to about 300, when the air pressure and delay time were controlled. Meanwhile, the relative standard deviations were improved from more than 30% to less than 5% due to the release of the self-absorption effect. This work proved that the spectral qualities of LIBS can be improved a lot by controlling the ambient pressure in the field of detecting major elements in soil.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils

Jhon Pareja, Sebastian López, Daniel Jaramillo, David W. Hahn, and Alejandro Molina
Appl. Opt. 52(11) 2470-2477 (2013)

Univariate and multivariate analyses of strontium and vanadium in soil by laser-induced breakdown spectroscopy

Cuiping Lu, Min Wang, Liusan Wang, Haiying Hu, and Rujing Wang
Appl. Opt. 58(27) 7510-7516 (2019)

Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy

Nan Li, Jinjia Guo, Chao Zhang, Yongquan Zhang, Qingyang Li, Ye Tian, and Ronger Zheng
Appl. Opt. 58(14) 3886-3891 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.