Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Inversion of two-flux and four-flux radiative transfer models for determining scattering and absorption coefficients for a suspended particle device

Not Accessible

Your library or personal account may give you access

Abstract

Intrinsic and extrinsic scattering and absorption coefficients of a suspended particle device (SPD) smart window sample at dark and clear appearance states—without and with applied electrical voltage, respectively—were determined by means of the Maheu, Letoulouzan, and Gouesbet four-flux (intrinsic) and Kubelka–Munk two-flux (extrinsic) radiative transfer models, respectively. Extrinsic values were obtained from fitting to the two-flux model taking into account the predominantly forward scattering of the SPD. As an approximation, the Fresnel reflection coefficients were integrated out to the critical angle of total internal reflection in order to compute diffuse interface reflectances. Intrinsic coefficients were retrieved by adding a new proposed approximation for the average crossing parameter based on the collimated and diffuse light intensities at each interface. This approximation, although an improvement of previous approaches, is not entirely consistent with the two-flux model results. However, it paves the way for further development of methods to solve the inverse problem of the four-flux model.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Generalized four-flux radiative transfer model

William E. Vargas
Appl. Opt. 37(13) 2615-2623 (1998)

Matching target color in polyolefins by estimating pigment concentrations using a four-flux model

Muhammad Safdar and Patrick Emmel
Appl. Opt. 62(26) 6961-6973 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved