Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical spectral intensity-based interrogation technique for liquid-level interferometric fiber sensors

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose a new, to the best of our knowledge, technique based on the measurement and analysis of the intensity of the interference pattern as an alternative approach for interrogating liquid-level interferometric fiber sensors. This interrogation is based on calculations that can take into account a vast number of peaks and dips of an interferometric spectrum, allowing the use of such devices as distributed sensors capable of measuring longer-level ranges. Here, liquid-level measurements of up to 120 mm were experimentally obtained with high linearity and a sensitivity of $ - {0.042}\;{\rm dB/mm}$.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Envelope-based technique for liquid level sensors using an in-line fiber Mach–Zehnder interferometer

Camilo A. Rodríguez, Moisés R. N. Ribeiro, Anselmo Frizera-Neto, Carlos E. S. Castellani, and Maria José Pontes
Appl. Opt. 55(34) 9803-9809 (2016)

Thin fiber-based Mach–Zehnder interferometric sensor for measurement of liquid level, refractive index, temperature, and axial strain

Wei Liu, Xuqiang Wu, Gang Zhang, Shili Li, Cheng Zuo, Wujun Zhang, and Benli Yu
Appl. Opt. 59(6) 1786-1792 (2020)

High-speed, large dynamic range spectral domain interrogation of fiber-optic Fabry–Perot interferometric sensors

Kit Pan Wong, Hyun-Tae Kim, Keshav Rajasekaran, Amirhossein Yazdkhasti, Bala Sai Sudhakar, An Wang, Samuel E. Lee, Kenneth Kiger, James H. Duncan, and Miao Yu
Appl. Opt. 61(16) 4670-4677 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.