Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Cloud scattering influence on satellite laser altimetry data and its correction

Not Accessible

Your library or personal account may give you access

Abstract

Satellite laser altimetry can obtain submeter or even centimeter-level surface elevation information over a large range. However, the laser will inevitably be affected by clouds during transmission through the atmosphere, which seriously affects the accuracy of altimetry. In this paper, based on laser altimetry data, cloud optical depth inversion was realized by using the Fernald method. The influence of clouds on the echo waveform data was analyzed with actual data, and a method of cloud scattering error correction was proposed. The existing error correction methods are mostly based on the results of semi-analytical Monte Carlo simulations. In observations, it is difficult to synchronously obtain the parameters required for simulation, which significantly limits the method. Therefore, a method for correcting the cloud scattering error of satellite laser altimetry data based on an exponential model is also proposed. The experimental results show that when the cloud optical depth is $0 {-} 2$, the root mean square error of the model is 0.05, which can correct the height measurement deviation caused by the cloud to within 5 cm and improve the availability of the laser height measurement data affected by the cloud scattering.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Waveform width of a satellite laser altimeter illuminating on the sea surface

Yue Ma, Song Li, Wenhao Zhang, Zhiyu Zhang, Hui Zhou, and Ma Xin
Appl. Opt. 56(22) 6130-6137 (2017)

Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland

Song Li, Wenhao Zhang, Yue Ma, Xiao Hua Wang, Fanlin Yang, and Dianpeng Su
Appl. Opt. 57(10) 2482-2489 (2018)

Low and optically thin cloud measurements using a Raman-Mie lidar

Yonghua Wu, Shuki Chaw, Barry Gross, Fred Moshary, and Sam Ahmed
Appl. Opt. 48(6) 1218-1227 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.