Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental research on a Raman-based distributed temperature sensor assisted by PCA for locating the temperature abnormal event of nuclear waste drums

Not Accessible

Your library or personal account may give you access

Abstract

Aimed at locating the temperature abnormal event of nuclear waste drums in a nuclear waste temporary storage repository by a Raman-based distributed temperature sensor, a principal component analysis (PCA)-based method for application is proposed. The effectiveness of the proposed method is verified in the physical simulation device of the nuclear waste drums. First, some samples of the temperature abnormal event with known location are taken as the reference samples, and their features are extracted by PCA. Then, the features of the test sample data to be located are also extracted by PCA. The Euclidean distance is used to measure the similarity between the features of the test sample and the feature of each reference sample. Finally, we find the reference sample that is most similar to a test sample, the location of which is considered the location of the temperature anomaly event for the test sample. The experimental results show that the proposed method can accurately locate the temperature abnormal event of the nuclear waste drums, and the accuracy rate can reach 96%. The method that is proposed in this paper can reliably locate the temperature abnormal event generated by the nuclear waste temporary storage repository induced by external factors such as landslides or earthquakes, and provide technical support for nuclear safety.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate quantification of alkalinity of sintered ore by random forest model based on PCA and variable importance (PCA-VI-RF)

Xinxin Deng, Guang Yang, Hong Zhang, and Guanyu Chen
Appl. Opt. 59(7) 2042-2049 (2020)

Event recognition method based on feature synthesizing for a zero-shot intelligent distributed optical fiber sensor

Yi Shi, Hanfang Liu, Wentao Zhang, Zhongdi Cheng, Jiewei Chen, and Qian Sun
Opt. Express 32(5) 8321-8334 (2024)

Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition

Abul Kalam Azad, Faisal Nadeem Khan, Waled Hussein Alarashi, Nan Guo, Alan Pak Tao Lau, and Chao Lu
Opt. Express 25(14) 16534-16549 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.