Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive carrier fringe pattern enhancement for wavelet transform profilometry through modifying intrinsic time-scale decomposition

Not Accessible

Your library or personal account may give you access

Abstract

The uneven background illumination and random noise will degrade the quality of the optical fringe pattern, resulting in reduced accuracy or errors in phase extraction of wavelet transform profilometry (WTP). An adaptive fringe pattern enhancement method is proposed in this paper, which can effectively solve the above problems and improve the robustness of WTP. First, a modified intrinsic time-scale decomposition (MITD) algorithm is used to decompose each row of the fringe pattern adaptively, which can obtain a set of reasonable and pure proper rotation components (PRCs) with a frequency ranging from high to low and a monotonic trend. The MITD algorithm can overcome the mode mixing problem while ensuring the completeness of decomposition. Then, based on the obtained pure PRCs, an innovative background-carrier signal-noise automatic grouping strategy is proposed. Specifically, weighted-permutation entropy (WPE) is adopted to handle noise removal, and fuzzy gray correlation analysis (FGCA) is used to separate the background and carrier signal. Finally, the desired phase information can be easily and accurately extracted from the enhanced carrier signal component by a direct wavelet ridge detection method. Both the simulation and experimental results demonstrate the effectiveness and functionality of the proposed method.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Differential signal-assisted method for adaptive analysis of fringe pattern

Chenxing Wang and Feipeng Da
Appl. Opt. 53(27) 6222-6229 (2014)

Spatial carrier fringe pattern phase demodulation by use of a two-dimensional real wavelet

Sikun Li, Xianyu Su, and Wenjing Chen
Appl. Opt. 48(36) 6893-6906 (2009)

Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition

Paweł Gocłowski, Maciej Trusiak, Azeem Ahmad, Adam Styk, Vicente Mico, Balpreet S. Ahluwalia, and Krzysztof Patorski
Opt. Express 28(5) 6277-6293 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved