Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis and modulation of aberration in an extreme ultraviolet lithography projector via rigorous simulation and a back propagation neural network

Not Accessible

Your library or personal account may give you access

Abstract

Lens aberration is a critical factor affecting lithography, one that deteriorates the image fidelity and contrast. As the perfect lens does not exist, the aberration control is important for real optical systems, especially for extreme ultraviolet lithography (EUVL). By choosing the process variation band (PVB) and pattern shift (PS) as the lithographic performance indicators, the inverse analysis model for aberration control is proposed in this paper. First, the effects of aberration with 36 Zernike terms on lithography performance are forward analyzed. Using the definitive screening design (DSD) and with the help of statistical analysis methods of analysis of variance and F test, the combined Zernike terms leading to prominent PVB and PS are identified. After giving a brief introduction of backpropagation neural network (BPNN), the aberration control model based on DSD and BPNN is then established. Finally, several examples are analyzed to demonstrate the effectiveness and robustness of the aberration control model. Predicted results show that the optimum distribution of Zernike coefficients given by the aberration model can generate minimum impact on imaging quality, and this impact is very close to that of zero aberration. The results demonstrate that the BPNN-based aberration model has the potential to be an efficient guiding method for controlling the aberration of EUVL in the optical design stage.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Aberration analysis and compensate method of a BP neural network and sparrow search algorithm in deep ultraviolet lithography

Shuang Zhang, Libin Zhang, Tianyang Gai, Peng Xu, and Yayi Wei
Appl. Opt. 61(20) 6023-6032 (2022)

Aberration budget analysis of EUV lithography from the imaging performance of a contact layer in a 5 nm technology node

Zhishu Chen, Lisong Dong, Huwen Ding, and Yayi Wei
Appl. Opt. 62(27) 7270-7279 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.