Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental study of different pulse delays on the phenomenon of double shock waves induced by a millisecond–nanosecond combined-pulse laser

Not Accessible

Your library or personal account may give you access

Abstract

We study the motion morphology, distance, and velocity of plasma and laser-induced shock waves induced by a millisecond–nanosecond (ms-ns) combined-pulse laser with different pulse delays on silicon. The laser shadowgraph method is used, and the phenomenon of double laser-induced shock waves has been found while the pulse delay is 1.2–1.8 ms. The controlling variable method is used to study this phenomenon, and it is found that it is mainly related to the ignition of the laser-supported absorption wave induced by the ms laser. Moreover, the plasma expansion velocity increases with the increase of pulse delay, the axial propagation distance of laser-induced shock waves increases monotonically with pulse delay, and the velocity of laser-induced shock waves decreases with the increase of pulse delay.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental study of the morphological evolution of the millisecond–nanosecond combined-pulse laser ablation of aluminum alloy

Bo-Shi Yuan, Di Wang, Yuan Dong, Wei Zhang, and Guang-Yong Jin
Appl. Opt. 57(20) 5743-5748 (2018)

Influence of surface roughness on nanosecond laser-induced shock wave enhancement effects

Lei Chen, Chuan Guo, Zelin Liu, Hao Liu, Minsun Chen, Zhongjie Xu, Guomin Zhao, and Kai Han
Appl. Opt. 61(29) 8859-8863 (2022)

Surface damage induced by a combined millisecond and nanosecond laser

Xueming Lv, Yunxiang Pan, Zhichao Jia, Zewen Li, and Xiaowu Ni
Appl. Opt. 56(17) 5060-5067 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.