Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Both speckle reduction and contrast enhancement for optical coherence tomography via sequential optimization in the logarithmic domain based on a refined Retinex model

Not Accessible

Your library or personal account may give you access

Abstract

Optical coherence tomography (OCT) image enhancement is a challenging task because speckle reduction and contrast enhancement need to be addressed simultaneously and effectively. We present a refined Retinex model for guidance in improving the performance of enhancing OCT images accompanied by speckle noise; a physical explanation is provided. Based on this model, we establish two sequential optimization functions in the logarithmic domain for speckle reduction and contrast enhancement, respectively. More specifically, we obtain the despeckled image of an entire OCT image by solving the first optimization function. Incidentally, we can recover the speckle noise map through removing the despeckle component directly. Then, we estimate the illumination and reflectance by solving the second optimization function. Further, we apply the contrast-limited adaptive histogram equalization algorithm to adjust the illumination, and project it back to the reflectance for achieving contrast enhancement. Experimental results demonstrate the robustness and effectiveness of our proposed method. It performs well in both speckle reduction and contrast enhancement and is superior to the other two methods both in terms of qualitative analysis and quantitative assessment. Our method has the practical potential to improve the accuracy of manual screening and computer-aided diagnosis for retinal diseases.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Joint Retinex-based variational model and CLAHE-in-CIELUV for enhancement of low-quality color retinal images

Zongheng Huang, Chen Tang, Min Xu, and Zhenkun Lei
Appl. Opt. 59(28) 8628-8637 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.