Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Far-field diffraction pattern of a nonideal retroreflector for polarized light with an oblique incidence

Not Accessible

Your library or personal account may give you access

Abstract

The far-field diffraction pattern (FFDP) of a corner cube retroreflector (CCR) determines the energy of a retroreflecting beam in some applications including laser ranging, optical communication, and satellite orbit calibration. The FFDP of an imperfect CCR is investigated analytically for the non-normal incidence of a polarized light beam. We first derive a complex amplitude of a retroreflecting beam in relation with multiple parameters including the errors of dihedral angle, flatness in a CCR, and polarization property of the CCR. Then a theoretical expression of the FFDP for a nonideal CCR is deduced as a function of multiple parameters by introducing the complex amplitude into a simplified Kirchhoff’s diffraction equation. Some numerically simulated results of the FFDP are presented to give a visual illustration of the relationship between the FFDP and these parameters. Our findings suggest that a strong correlation between the FFDPs and multiple factors comprising the manufacturing errors, the polarization states, and the incident angles of the input beam as well as whether the reflecting faces of the CCR are coated or not. The FFDPs can be efficiently controlled by allocating the magnitudes of these factors. Moreover, experimental verification of the FFDP is also developed for a nonideal CCR coated with silver film on the reflecting faces at a non-normal incidence. The proposed mathematical model potentially offers beneficial ingredients towards optimizing design of a CCR by considering both the manufacturing errors and incident conditions of the input beam.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Ground-based corner cube retroreflector optimal design for the geolocation validation of satellite photon counting lidar

Qianyin Zhang, Hui Zhou, Song Li, and Yue Ma
Appl. Opt. 60(34) 10579-10586 (2021)

Optical characterization of laser retroreflector arrays for lunar landers

Daniel R. Cremons, Xiaoli Sun, Zachary Denny, Shane W. Wake, Evan D. Hoffman, Erwan Mazarico, Edward C. Aaron, and David E. Smith
Appl. Opt. 59(16) 5020-5031 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.