Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pixel dislocation correction method for a laser confocal scanning microscope through the nonlinear triangular wave driving mode and square wave index reconstruction

Not Accessible

Your library or personal account may give you access

Abstract

The reciprocate scanning scheme of two-dimensional galvanometers is widely used in laser confocal scanning microscopes with high speed. However, the equal interval acquisition of an analog digital acquisition card (AD) and the unequal change of the galvanometer’s scanning speed will cause the dislocation of pixels and distortion of the reconstructed image. Meanwhile, the movement properties of the galvanometers in the edge of the scanning area are complex, which will increase the difficulty of segmenting the collected one-dimensional data stream the AD collected into row data of a two-dimensional reconstructed image. Therefore, how to timely and accurately segment the one-dimensional data stream the AD collected into the row data of two-dimensional reconstructed image is not only the key to solve image distortion of a laser confocal scanning microscope with high speed but also the prerequisite to improve the accuracy of row data dislocation correction. A driving mode based on the nonlinear triangular wave and a dislocation-correcting method using a square wave index are proposed. Namely, on the basis of the galvanometer’s scanning analysis, the equation of a nonlinear triangular wave driving voltage is established, and the switching frequency of the Y-galvanometer’s driving voltage is obtained by calculating the collected switching frequency of the X-galvanometer; thus, the uniformity of the galvanometer’s scanning trajectories is secured. Finally, the row segmentation flag pulse is first introduced into the one-dimensional data stream the AD collected, and the square wave index is used to segment the collected data, which means the one-dimensional data stream can be segmented timely and accurately via hardware method. Meanwhile, the pixel dislocation can be corrected. The experimental result shows that, compared with the Nikon A1R$+$ confocal microscope, the proposed method can effectively correct the pixel dislocation, and the position coincidence error is less than 0.7%. The proposed method will be helpful to improve the image quality of a laser confocal scanning microscope with high speed.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second

S. Choi, P. Kim, R. Boutilier, M. Y. Kim, Y. J. Lee, and H. Lee
Opt. Express 21(20) 23611-23618 (2013)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.