Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable plasmonic filter based on parallel bulk Dirac semimetals at terahertz frequencies

Not Accessible

Your library or personal account may give you access

Abstract

A plasmonic bandpass filter based on parallel bulk Dirac semimetals (BDSs) is proposed and numerically investigated using the finite-difference time-domain method. The proposed filter is realized by the evanescent coupling between the resonator and waveguide, and Fabry–Parot resonant theory is used to analyze its realization mechanism. The performance of the filter can be tuned by changing the coupling distance, length of the resonator, and Fermi levels of the BDSs. We further simulate a plasmonic broadband filter using coupling mode splitting by locating two identical resonators along the waveguide direction. The pass band of the proposed broadband filter can be tuned by adjusting the coupling distances between the resonators and waveguide.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dirac semimetals based tunable narrowband absorber at terahertz frequencies

Gui-Dong Liu, Xiang Zhai, Hai-Yu Meng, Qi Lin, Yu Huang, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 26(9) 11471-11480 (2018)

Actively tunable plasmon-induced transparency in terahertz based on Dirac semimetal metamaterials

Yong Li, Sa Yang, Qiawu Lin, Shuang Li, Mingyang Su, and Liangpo Tang
Appl. Opt. 62(27) 7139-7144 (2023)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.