Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ambient temperature effect on the imaging quality of an aspherical airborne camera: theoretical and experimental analysis

Not Accessible

Your library or personal account may give you access

Abstract

The ambient temperature is one of the important factors that affects the imaging quality of aspherical airborne camera. In order to evaluate the imaging quality of an airborne camera under the effect of ambient temperature and predict the influence of the ambient temperature on the modulation transfer function (MTF) of the airborne camera, on the basis of the imaging principle and the material properties of lenses of the airborne camera, this study integrates theoretical analysis, simulation analysis, and experimental tests to study the influence of ambient temperature on the imaging performance of airborne cameras. The imaging performance of an airborne camera is characterized by using the MTF. First, a mathematical model is presented to analyze the effect of ambient temperature on the MTF of the airborne camera. Then the simulation analysis and experiment tests are, respectively, proposed. The results of the mathematical model are compared, respectively, with the results of the simulation analysis and experimental test, and the comparison shows that the variation trends of the mathematical model results are in line with the simulation results and the experimental results, respectively. Therefore, the mathematical model presented in this study is effective for analyzing the influence of ambient temperature variation on the MTF of airborne cameras.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Impact of microvibration on the optical performance of an airborne camera

Jieqiong Lin, Yan Zhou, Haitao Wang, Yan Gu, Minghui Gao, Xin Guo, and Haibo Xu
Appl. Opt. 60(5) 1283-1293 (2021)

Analysis of the influence of vibrations on the imaging quality of an integrated TDICCD aerial camera

Xiaoqin Zhou, Hao Liu, Yucheng Li, Meng Ma, Qiang Liu, and JieQiong Lin
Opt. Express 29(12) 18108-18121 (2021)

Thermal-optical characteristics analysis of an aerial camera optical system

Dongxue Wang, Zhanguo Li, Jieqiong Lin, Mingming Lu, Yingchun Li, and Tonghuan Ran
Appl. Opt. 61(28) 8190-8196 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.