Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image reconstruction with the chaotic fiber laser in scattering media

Not Accessible

Your library or personal account may give you access

Abstract

The reconstruction of the size, position, optical properties, and structure of the object in scattering media was realized with a chaotic fiber laser. The light from the chaotic fiber laser was split into two parts. One part was used as the detection signal to detect the object, and the other was used as the reference signal; then, the two signals were cross correlated. The attenuation of light in scattering media was attributed to scattering and absorption. The theoretical model of the peak value of cross correlation of the chaotic signals as projection data were established by the attenuation law, and the filtered back-projection algorithms were used to realize the image reconstruction. The mean squared error, the normalized mean squared error, the peak signal-to-noise ratio, and the structural similarity index of the reconstructed image were analyzed. The results show that the high resolution of the reconstructed image benefits from the high signal-to-noise ratio with the chaotic fiber laser based on a delta-like cross-correlation function.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
High spatial resolution diffuse optical tomography based on cross-correlation of chaotic light

Jia Li, Lingzhen Yang, Yueling Hao, Hanlu Feng, Weijie Ding, Juanfen Wang, Huifeng Shang, and Gang Ti
Opt. Express 32(7) 12496-12507 (2024)

Tomographic image reconstruction from optical projections in light-diffusing media

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten
Appl. Opt. 36(1) 180-213 (1997)

Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media

Scott A. Walker, Sergio Fantini, and Enrico Gratton
Appl. Opt. 36(1) 170-179 (1997)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.