Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing

Not Accessible

Your library or personal account may give you access

Abstract

A 10 mm-long three-dimensional shape sensor in a single-mode fiber is described and demonstrated experimentally. The sensor is based on a pair of fiber Bragg gratings inscribed at the same location along the fiber axis but offset along different radial directions away from the fiber center. Each offset grating generates cladding mode resonances over a ${\sim}{20}\;{\rm{nm}}$-wide spectral bandwidth, and the two gratings are also offset in period so that their transmission spectra are separated by 40 nm, and thus non-overlapping and fully distinguishable. Directional bending sensitivity results from the differential amplitude response of the cladding mode resonances from the two gratings, depending on the relative orientation of the bend with the azimuthal direction of the grating offsets. It is further demonstrated that both axial deformation and temperature have no influence on the shape measurement as they both only cause a global wavelength shift of the spectra without amplitude change. The experimental results demonstrate that the shape orientation of an object can be unambiguously determined for bend directions covering the full 360° range around the fiber axis with sensitivities of the order of ${{1}}\;{\rm{dB/}}{{\rm{m}}^{- 1}}$ and small curvatures between 0 and ${{1}}\;{{\rm{m}}^{- 1}}$.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides

Kenneth K.C. Lee, Adrian Mariampillai, Moez Haque, Beau A. Standish, Victor X.D. Yang, and Peter R. Herman
Opt. Express 21(20) 24076-24086 (2013)

Multiple off-axis fiber Bragg gratings for 3D shape sensing

Christian Waltermann, Konrad Bethmann, Alexander Doering, Yi Jiang, Anna Lena Baumann, Martin Angelmahr, and Wolfgang Schade
Appl. Opt. 57(28) 8125-8133 (2018)

Temperature-compensated fiber directional-bend sensor based on a sandwiched MMF–PMPCF structure

Dingyi Feng, Biqiang Jiang, Yajun Jiang, and Jianlin Zhao
Appl. Opt. 60(2) 433-437 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.