Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simplified digital content generation based on an inverse-directed propagation algorithm for holographic stereogram printing

Not Accessible

Your library or personal account may give you access

Abstract

Holographic stereogram (HS) printing requires extensive memory capacity and long computation time during perspective acquisition and implementation of the pixel re-arrangement algorithm. Hogels contain very weak depth information of the object. We propose a HS printing system that uses simplified digital content generation based on the inverse-directed propagation (IDP) algorithm for hogel generation. Specifically, the IDP algorithm generates an array of hogels using a simple process that acquires the full three-dimensional (3D) information of the object, including parallax, depth, color, and shading, via a computer-generated integral imaging technique. This technique requires a short computation time and is capable of accounting for occlusion and accommodation effects of the object points via the IDP algorithm. Parallel computing is utilized to produce a high-resolution hologram based on the properties of independent hogels. To demonstrate the proposed approach, optical experiments are conducted in which the natural 3D visualizations of real and virtual objects are printed on holographic material. Experimental results demonstrate the simplified computation involved in content generation using the proposed IDP-based HS printing system and the improved image quality of the holograms.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Layered holographic stereogram based on inverse Fresnel diffraction

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Appl. Opt. 55(3) A154-A159 (2016)

Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Opt. Express 23(4) 3901-3913 (2015)

Volume holographic printing using unconventional angular multiplexing for three-dimensional display

Liangcai Cao, Zheng Wang, Hao Zhang, Guofan Jin, and Claire Gu
Appl. Opt. 55(22) 6046-6051 (2016)

Supplementary Material (3)

NameDescription
Visualization 1       The reconstruction of the printed HS of a virtual 3D object (“3D OIP”) from the different viewpoints is shown in Visualization 1.
Visualization 2       The reconstruction of the printed HS of a virtual 3D object (“M. Pjanic sphere”) from the different viewpoints is shown in Visualization 2.
Visualization 3       The reconstruction of the printed HS of a real 3D object (“Venus”) from the different viewpoints is shown in Visualization 3.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.