Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Double-path parallel convolutional neural network for removing speckle noise in different types of OCT images

Not Accessible

Your library or personal account may give you access

Abstract

Speckle noises widely exist in optical coherence tomography (OCT) images. We propose an improved double-path parallel convolutional neural network (called DPNet) to reduce speckles. We increase the network width to replace the network depth to extract deeper information from the original OCT images. In addition, we use dilated convolution and residual learning to increase the learning ability of our DPNet. We use 100 pairs of human retinal OCT images as the training dataset. Then we test the DPNet model for denoising speckles on four different types of OCT images, mainly including human retinal OCT images, skin OCT images, colon crypt OCT images, and quail embryo OCT images. We compare the DPNet model with the adaptive complex diffusion method, the curvelet shrinkage method, the shearlet-based total variation method, and the OCTNet method. We qualitatively and quantitatively evaluate these methods in terms of image smoothness, structural information protection, and edge clarity. Our experimental results prove the performance of the DPNet model, and it allows us to batch and quickly process different types of poor-quality OCT images without any parameter fine-tuning under a time-constrained situation.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Reducing speckle in anterior segment optical coherence tomography images based on a convolutional neural network

Liansheng Liu, Zuopan Zhai, Ting Zhang, and Licheng Fan
Appl. Opt. 60(35) 10964-10974 (2021)

Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN

Yuhui Ma, Xinjian Chen, Weifang Zhu, Xuena Cheng, Dehui Xiang, and Fei Shi
Biomed. Opt. Express 9(11) 5129-5146 (2018)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.